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Abstract
Predicting forest recovery at landscape scales will aid forest restoration ef-
forts. The first step in successful forest recovery is tree recruitment. Forecasts 
of tree recruit abundance, derived from the landscape-scale distribution of 
seed sources (i.e. adult trees), could assist efforts to identify sites with high 
potential for natural regeneration. However, previous work has revealed wide 
variation in the effect of seed sources on seedling abundance, from positive 
to no effect. We quantified the relationship between adult tree seed sources 
and tree recruits, and predicted where natural recruitment would occur in a 
fragmented, tropical, agricultural landscape. We integrated species-specific 
tree crown maps generated from hyperspectral imagery and property owner-
ship data with field data on the spatial distribution of tree recruits from five 
species. We then developed hierarchical Bayesian models to predict land-
scape-scale recruit abundance. Our models revealed that species-specific 
maps of tree crowns improved recruit abundance predictions. Conspecific 
crown area had a much stronger impact on recruitment abundance (8.00% in-
crease in recruit abundance when conspecific tree density increases from zero 
to one tree; 95% CI: 0.80 to 11.57%) than heterospecific crown area (0.03% 
increase with the addition of a single heterospecific tree, 95% CI: -0.60 to 
0.68%). Individual property ownership was also an important predictor of re-
cruit abundance: the best performing model had varying effects of conspecific 
and heterospecific crown area on recruit abundance, depending on individual 
property ownership. We demonstrate how novel remote sensing approaches 
and cadastral data can be used to generate high-resolution and landscape-lev-
el maps of tree recruit abundance. Spatial models parameterized with field, 
cadastral, and remote sensing data are poised to assist decision support for 
forest landscape restoration.

KEYWORDS
Agricultural landscape, forest landscape restoration, hyperspectral imagery, 
lidar data, natural regeneration, operational species mapping, tree crown 
maps, tree recruitment, trees outside the forest.
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IntroductionIntroduction

Natural regeneration in tropical landscapes is a low-cost 
climate solution that can sequester carbon while support-
ing other ecosystem services (Chazdon and Uriarte 2016, 
Lennox et al. 2018, Matos et al. 2020, Cook-Patton et al. 
2020). Operationalizing natural regeneration as a strategy 
in forest landscape restoration (FLR) plans will require 
identifying locations where native tree cover will return 
without active restoration (Chazdon and Guariguata 2018). 
However, natural regeneration in tropical landscapes is 
unpredictable, with high variability in successional tra-
jectories among sites (Norden et al. 2015). Understanding 
the demographic mechanisms that drive landscape-scale 
forest recovery could reduce uncertainty in forecasts of 
secondary forest succession (Menge and Chazdon 2016, 
Caughlin et al. 2019b). 

Tree recruitment is a demographic rate required for for-
est recovery, but is poorly understood at landscape scales. 
A minimum number of seeds must arrive to initiate forest 
recovery (Caughlin et al. 2016a). Low recruitment, in-
cluding seed dispersal, germination, and seedling survival, 
can be a critical impediment for reforestation (Holl et al. 
2000). Nevertheless, attempts to relate seed sources (e.g., 
forest cover) to tree recruitment in reforesting landscapes 
have shown mixed results. For example, some studies 
have found that recruit abundance increases with closer 
proximity to forest fragments (Parrotta 1993, Griscom et 
al. 2009, Crk et al. 2009, Robiglio and Sinclair 2011, El-
liott et al. 2013, Crouzeilles and Curran 2016, Breugel et 
al. 2019), while others have found weak or undetectable 
effects of surrounding forest cover on recruit abundance 
(Duncan and Duncan 2000, Lopes et al. 2012, Zahawi et 
al. 2013, Holl et al. 2017). Resolving the question of why 
seed sources have a variable effect on recruitment will 
advance our ability to forecast natural regeneration over 
large areas.

A challenge of quantifying the relationship between 
seed sources and recruitment rates is that seed dispersal 
occurs at large spatial scales (>km) but recruitment suc-
cess varies spatially at fine scales (m). The spatial patterns 
of dispersal and recruitment are modified by differences 
in dispersal syndromes and functional traits among spe-
cies and the relative abundance of reproductive trees in the 
landscape. Attempts to understand recruitment patterns by 
lumping multiple tree species into a single metric (e.g., 
distance-to-forest-edge or percent forest cover; Robiglio 
and Sinclair 2011, Crouzeilles and Curran 2016, Holl et al. 
2017) do not take species-specific dispersal syndromes and 
abundances into account. Therefore, these attempts may 

erroneously predict high recruitment potential for species 
that are absent as reproductive trees in the landscape. Al-
ternately, a high abundance of conspecific trees (trees of 
the same species) could negatively affect recruitment due 
to conspecific negative density dependence (Comita et al. 
2010, Johnson et al. 2012, Uriarte et al. 2018).  We hy-
pothesize that predictions of tree recruitment in tropical 
agricultural landscapes will improve when based on maps 
containing all reproductive trees identified to species (Har-
vey et al. 2004, Graves et al. 2016, Tarbox et al. 2018).

Another potential factor explaining the high uncertain-
ty in forest recovery trajectories is human land use. Land 
management choices can result in different disturbance re-
gimes (e.g. burning, clearing) that influence forest recov-
ery (Mesquita et al. 2001). Landowner preferences also 
influence species abundance and ecological dynamics that 
shape recruitment (Griscom et al. 2009, Metzel and Mon-
tagnini 2014). For example, when deciding whether or not 
to enable natural regeneration on their properties, some 
farmers may favor rare species’ natural regeneration rather 
than common species (Lengkeek 2003). Thus, land man-
agement is likely to alter tree recruitment patterns in ways 
that are species-specific and vary across the landscape.

High-resolution spatial information on position and 
species identity of trees on land management may help to 
improve predictions of tree recruitment. In particular, ae-
rial lidar and hyperspectral imagery can be used to map 
individual adult tree crowns and species across multiple 
property ownership units (Fischer et al. 2019). Segmented 
tree crowns from lidar data can be paired with hyperspec-
tral imagery to identify individual adult trees to species 
(Graves et al. 2016). Species-specific tree crown maps 
derived from airborne high spatial and spectral resolu-
tion imagery have demonstrated the potential to address 
ecological questions that require a landscape perspective 
(Schimel et al. 2015) for example, community assembly 
across elevation gradients (Durán et al. 2019).

Our objective is to predict the abundance of tree re-
cruits at broad spatial scales in a diverse tropical agricul-
tural landscape. We combined a) species-specific mapped 
tree crowns derived from fused hyperspectral and lidar im-
agery, b) field data on recruit abundance, and c) property 
boundary data to quantify how abundance and spatial dis-
tribution of tree recruits is related to seed sources and land 
management, and to predict landscape-level recruit abun-
dance. Our work is directly relevant to landscape-scale 
reforestation activities because it improves our ability to 
identify areas where native tree recruitment will occur 
with minimal intervention. We answer the following ques-
tions:
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1) Can species-specific tree crown maps from hyper-
spectral and lidar data improve the ability to predict the 
abundance of tree species recruits? 

2) Does the effect of the total neighboring tree crown 
area on recruit abundance vary between tree species? 

3) Does individual property ownership influence tree 
recruitment abundance? 

Given answers to questions (1-3), we then demonstrate 
how spatial models for tree recruit abundance could pro-
vide decision-support for where natural regeneration is 
likely to occur. 

Materials and methodsMaterials and methods

Study site

Our study area is located in the Azuero Peninsula of south-
western Panama (Figure 1). Average rainfall is 1,700 mm 
yr-1, and the dry season is from December to March. The 
soils are Cambisols (Nachtergaele et al. 2010) derived 
from volcanic, plutonic, and sedimentary rocks (Buchs et 
al. 2010, Batista-Rodríguez et al. 2017). Elevation ranges 
from near sea level to a maximum elevation of 156.91 m. 
Slope ranges from 0 degrees to 89.69 degrees. The Azu-
ero Peninsula was historically dominated by dry tropical 
forest but was cleared for timber and ranching during the 
20th century, resulting in less than 2% remnant forest cov-
er (Griscom et al. 2011). Recently, as off-farm economic 
activities have led to declines in agricultural activity, tree 
cover has increased across the region (Sloan 2015) in the 
form of forest patches, isolated pasture trees, riparian forest 

corridors, and live fences (Griscom et al. 2011).  However, 
areas with tree cover increases are spatially-dispersed and 
counterbalanced by areas with tree cover loss (Tarbox et 
al. 2018). Stakeholders in the Azuero increasingly express 
concern over forest scarcity, leading to community-driv-
en efforts to restore tree cover to degraded lands (Garen 
et al. 2009, Metzel and Montagnini 2014). Local interest 
in restoration parallels national-scale initiatives, such as 
Panama’s “Alliance for one Million”, which seeks to re-
store tree cover to one million hectares of degraded land. 
Identifying areas suitable for natural regeneration will aid 
these large-scale reforestation initiatives.

Tree species selection 

To relate the abundance of tree recruits to adult trees in 
the surrounding landscape, we used a map of adult tree 
species derived from aerial lidar and hyperspectral data 
(Graves et al. 2016). These aerial data were collected by 
the Global Airborne Observatory (GAO; formerly the Car-
negie Airborne Observatory) in January 2012 (Asner et al. 
2012). The dual-laser waveform lidar scanned data were 
used to develop a canopy height model with a pixel size of 
~1.13 m that enabled individual tree crown segmentation 
(Dalponte and Coomes 2016), resulting in 298,971 crowns 
across 23 000 ha. The hyperspectral imagery (380–2510 
nm; 5 nm bandwidth) was then used in a support vector 
machine (SVM) model to classify segmented crowns to 
tree species, with a training data set of 1,112 field-iden-
tified tree crowns (see Graves et al. 2016 for additional 
details). For our study, we selected five focal species based 
on two criteria: (1) the SVM could classify the tree spe-
cies with high predictive accuracy (F-score >70%) and (2) 
the presence of recruits in landscape-scale plots within 
our study area (Hall and Ashton 2016). The five species 
include Byrsonima crassifolia, Calycophyllum candidissi-
mum, Cedrela orodata, Guazuma ulmifolia, and Enterolo-
bium cyclocarpum. Together, these five species represent a 
range of phylogeny, functional traits, and human use (Ta-
ble 1). Although the focal study species belong to different 
successional stages, all five species survive and grow well 
in full sunlight during their first years (Hall and Ashton 
2016).

Environmental and social covariates

In addition to the mapped tree crowns, we developed two 
additional covariates as predictors of tree recruit abun-
dance at landscape scales: elevation and individual prop-
erty ownership. Because topography influences secondary 
succession (Barbosa and Asner 2017, Breugel et al. 2019), 

Figure 1  
Study area in Southwestern Panama. The black lines represent 
the properties included in this study. Green colors indicate most-
ly forest vegetation cover, and tan colors indicate non-forested 
land covers. The black dot in the upper-right corner displays the 
location of the study site in Panama. Map data: Google, Airbus, 
Maxar Technologies. 
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transects of 100 m x 5 m, divided into 25 m2 quadrats. The 
100 m length of transects helped ensure that each transect 
could include a range of surrounding tree crown densities. 
To span a range of individual property ownerships, we 
stratified transect placement across 30 properties (Figure 
2), placing between one and three transects within each 
property. When possible, we placed one transect per prop-
erty into each of the three major habitats in the study area: 
riparian corridors, active pasture, and secondary forest. 
Some properties had less than three transects because they 
lacked one of the habitats within their boundaries. These 
habitats have different biotic and abiotic factors, with con-
sequences for recruit abundance (Myster 2008). In total, 
our sampling scheme resulted in 1,100 quadrats repre-
senting 2.75 ha. Because ecological differences between 
transects were driven by habitat and property boundaries 
that vary over small distances, we used a stratified random 
sampling design to place transects without a minimum 
distance between them.

Linking mapped tree crowns to tree recruit 
abundance 

We considered tree height and crown area as possible pre-
dictors to link the mapped adult trees with recruitment. Tree 
crown area and tree height metric were closely correlated 
(Pearson’s R = 0.58; Appendix S1: Figure S2). Relative to 
tree height, tree crown area has the advantage that it can 
be derived from high-resolution imagery alone, without 
requiring lidar data, so we decided to use tree crown as 
a predictor. To develop models that account for the rela-
tionship between tree crowns and recruit abundance, we 
measured total tree crown area in neighboring landscapes 

we incorporated it as a predictor variable in our models, 
using a digital elevation model with 1.13 m spatial reso-
lution, developed from the aerial lidar over our study area 
(Asner et al. 2012). Preliminary model selection suggested 
that elevation outperformed slope, aspect, and topographic 
roughness indices for predicting tree recruit abundance, so 
we only included elevation in our final models. 

The majority of land in the Azuero Peninsula is private-
ly owned, and property boundaries in the region help ex-
plain spatial heterogeneity in land cover change (Caughlin 
et al. 2019b). In addition, private land parcels represent a 
unit commonly used in restoration interventions (Olivei-
ra Fiorini et al. 2020). To account for individual property 
ownership in our models, we used a cadastral dataset de-
veloped by Panama’s National Authority for the Adminis-
tration of Lands and provided by the Fundación Pro Eco 
Azuero. As a predictor variable, we used the identity of the 
parcel in which recruit abundance was measured (Appen-
dix S1: Figure S1). Properties are largely owned by small-
holder farmers, with a mean (±SD) area of 49.15±54.92 
ha for properties in our dataset. Property boundaries do 
not correspond closely to biophysical features in the land-
scape, and differences in vegetation between properties 
most likely represent differences in land management (Va-
lencia Mestre 2017).

Field data on tree recruit abundance

We measured tree recruit abundance in July 2018 by count-
ing individuals of our focal species in transects stratified 
across the landscape. We defined tree recruits as individu-
als at least 0.5 m in height but < 1 cm in diameter at breast 
height (DBH). We measured tree recruit abundance in 

Species Family Dispersal syndrome Successional stages Human use

Byrsonima 
crassifolia

Malpighiaceae Animal Early to mid-succession W, PA, FW, LF, FR, E

Calycophyl lum 
candissium

Rubiaceae Wind Mid to late- succession W, PA, FW, LF

Cedrela orodata Meliaceae Wind Early to mid-succession W, LF, FW, FL
Guazuma 
ulmifolia

Sterculiaceae Cattle Early to mid-succession PA, FW, LF, FR, FL, T

Enterolobium 
cyclocarpum

Fabaceae Cattle & gravity Early and late succession W, PA, LF, FL, T

Table 1
Main species characteristics included in this study. Family and successional stage was obtained from Kalacska et al. (2004). Human 
use of tree species by local framers was obtained from Metzel and Montagnini 2014. Uses: W =Wood, FR = Fruit/Food for humans, 
T = Traditional Use, FW = Firewood, PA = Physical Attributes, LF = Living Fence Posts, M = Medicinal, E = Environmental purpose, 
FL = Food for livestock. Dispersal syndromes were obtained from Griscom and Ashton (2011).
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around quadrats. We separated the tree crown area into the 
conspecific crown area for each of our focal species, rep-
resenting tree crowns of the same species as recruits, and 
heterospecific crown area, representing tree crowns of all 
other species. We then summed the tree crown area within 
100 m of the center of each 25 m2 quadrat. We chose a 
threshold of 100 m based on previous literature that sug-
gests only a small percentage of tree seeds disperse >100 
m (Nathan and Muller-Landau 2000). Conspecific and 
heterospecific tree crown areas were not correlated (Pear-
son’s R = -0.023; 95% CI: -0.050 to 0.004). Preliminary 
analyses revealed improved model convergence and fit for 
summed tree crown area within 100 m, relative to spatial-
ly-explicit inverse models (i.e. Muller-Landau et al. 2008; 
Appendix S1: Section S1). Despite the increased biolog-
ical realism of distance-based models, these models are 

more complex including multiple parameters that interact 
in non-linear ways. Direct measurements of seed disper-
sal (e.g.  de la Peña-Domene and Martínez-Garza 2018) 
would be one solution to increase the signal-to-noise and 
fit inverse models. Discrete habitat type was used to strat-
ifying field sampling. However, habitat type was strongly 
correlated with heterospecific tree crown area (Appendix 
S1: Figure S3), limiting use of both variables in the same 
model. Because heterospecific tree crown area was more 
closely related to our overall objectives, we chose to use 
this variable, rather than habitat type, as a predictor vari-
able in models. The remotely sensed data used to generate 
the tree crown map was acquired four years before our 
field data on recruits was collected. This temporal gap is 
unlikely to impact our results as tree cover changes slowly 
in our study region (Tarbox 2018). In addition, given our 

Figure 2
Placement of transects in the study area in a typical parcel. Transects on the field are allocated on (1) secondary forest, (2) active 
pasture, and (3) riparian forest. Colored polygons represent the five target species in the study and are a subset of mapped individual 
tree crowns from Graves et al. (2016). Map data: Google, Airbus, Maxar Technologies.
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size threshold for counting recruits (>0.5 m in height) 
we expect that dispersed seeds may require at least a 
year to grow large enough to be counted in our transects 
(Burns 1990). 

Model development

Our primary modeling goal was to evaluate how neigh-
boring tree crowns impact tree recruit abundance. To 
accomplish this goal, we developed models of increas-
ing complexity to test spatial covariates’ impact on 
model predictions.

Tree recruit abundance in heterogeneous landscapes 
exemplifies overdispersed count data, which are typi-
cally modeled with a negative binomial distribution(-
Caughlin et al. 2012). An alternate choice for count data 
with a large number of zeros is a zero-inflated model 
(Blasco‐Moreno et al. 2019). Our fine-scale study de-
sign (25 m2 quadrats) and the rarity of recruitment in 
agricultural landscapes resulted in data rich in zeros 
(Lachlan et al. 2019). Therefore, we developed a ze-
ro-inflated model that included a binomial distribution 
to represent whether recruitment occurred or not, and 
a negative binomial distribution representing the like-
lihood of recruit abundance, conditional on recruitment 
(Blasco‐Moreno et al. 2019; Appendix S1: Section S3). 
Hereafter, recruit abundance refers to the recruit abun-
dance predicted by the full zero-inflated model, the 
number of recruits refers to the negative binomial distri-
bution of the model, and the probability of recruitment 
refers to the binomial distribution of the model.

We began by assessing intercept-only models repre-
senting different distributional assumptions for recruit 
abundance. The next step was to incorporate elevation 
as a covariate. We added elevation before any other co-
variates because relative to data on individual property 
ownership and mapped tree crowns, topographic data 
are widely available at global scales (Farr et al. 2007). 
We then added random effects representing individual 
property ownership and recruit species identity to the 
elevation-only model. We added individual property 
ownership and species identity as random effects, fol-
lowing best practices for modeling hierarchical data 
where sharing information improves group-level esti-
mates, including repeated measurements within species 
(Turner et al. 2018, McElreath 2020).

These random effects enabled the baseline value for 
recruit abundance to vary by property membership or by 
recruit tree species (random intercept) and the relation-
ship between elevation and recruit abundance to vary 
depending on property ownership or recruit tree species 

(random slopes). In addition to models with either prop-
erty membership or recruit tree species as a random ef-
fect, we tested models with both property membership 
and recruit tree species as random intercepts and slopes.

Building off models that incorporated elevation, 
property membership, and recruit species identity, we 
added heterospecific and conspecific tree crown area 
as additional covariates. Visual examination of the re-
lationship between conspecific tree crown area and re-
cruit abundance suggested a hump-shaped relationship 
(Appendix S1: Figure S4), and incorporating a quadrat-
ic term for the effect of conspecific tree crowns resulted 
in significant improvements in model fit. Thus, we in-
cluded a quadratic term for conspecific tree crown area 
in negative binomial models for abundance. In con-
trast, including a quadratic term for heterospecific tree 
crowns in models for abundance did not improve model 
fit and resulted in convergence problems, so we mod-
eled heterospecific tree crowns using only linear terms.

Next, we expanded models for tree crown area by 
including random effect terms that enabled the slope of 
the tree crown area to vary by recruit species identity 
and property membership. These random effects imply 
that recruit species identity and/or property membership 
mediate the relationship between tree crown area and 
recruit abundance. In sum, our most complex model in-
cluded heterospecific and conspecific tree crown area 
and elevation as variables dependent on recruit species 
identity and property membership. After accounting for 
spatial covariates and property membership in our final 
model, we did not find evidence for spatial autocorrela-
tion between neighboring quadrats (see Appendix S1: 
Section S2 for more details).

Model fitting

We used a Bayesian modeling framework with Hamil-
tonian Monte Carlo sampling to analyze our data. Our 
models were run in the Stan programming language 
using the brms package in R v. 3.6.3 (Bürkner 2017). 
To improve model convergence, we standardized co-
variates by centering around the mean and dividing by 
two standard deviations (Gelman 2008). We ran twelve 
chains for 8000 iterations with a warmup of 6000 itera-
tions, resulting in 24000 posterior draws per model. We 
assessed the chain mixing and convergence of the pa-
rameters using the Gelman-Rubin statistic (R-hat < 1.1; 
Gelman and Rubin 1992, Gelman and Hennig 2017) and 
through visual examination of chains using trace plots.
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Model selection

We assessed the predictive accuracy of our models for 
recruit abundance with out-of-sample data. Our out-of-
sample assessment was based on a k-fold approach that 
iteratively split quadrat data into 90% training data and 
10% test data withheld from model fitting. We repeated 
this procedure ten times, with no test data repetition be-
tween folds (Boyce et al. 2002). We then assessed model 
performance using mean absolute error (MAE) calculated 
for each of the ten folds test datasets. MAE can be inter-
preted on the original scale of the data as the difference 
between observed and predicted recruit counts in quadrats. 
MAE enabled us to evaluate how well recruit density in 
field data was predicted by our models.

ResultsResults

We located and identified 481 recruits, representing 53 
recruits of Bysrsonima crassifolia, 110 recruits of Caly-
cophyllum candissium, 206 recruits of Cedrela odorata, 
90 recruits of Guazuma ulmifolia, and 22 recruits of En-
terolobium cyclocarpum. We observed high variability in 
recruit abundance between properties (Figure 3). We in-
cluded a total of 23,875 adult tree crowns from the spe-
cies-specific tree crown map with an average crown area 
of 93 m2 (for more details about tree crowns see Appendix 
S1: Table S4).

Species-specific tree crown maps potential to 
predict tree species recruit abundance

The best model to predict recruits of all five species in-
cluded the mapped tree crown area as a predictor variable 
with effects varying by individual property ownership 
(Appendix S1: Table S4). However, when looking at the 
model error by recruits’ species, the best model for recruit 
abundance varied between species (Appendix S1: Table 
S4). For four out of five species (Byrsonima crassifolia, 
Cedrela odorata, Calycophyllum candidissimum, and En-
terolobium cyclocarpum), including conspecific and het-
erospecific tree crown area as covariates provided better 
predictions than models without these covariates. Allow-
ing variability between properties and recruit species also 
greatly improved the predictions of tree species recruit 
abundance (Appendix S1: Section S4 and Table S4). 

Effect of total tree crown area by tree species

Recruit abundance was more strongly related to conspe-
cific tree crown area than to heterospecific tree crown area 
(Figure 4).  For an average focal tree species in an average 
property, adding one conspecific average-sized tree crown 
(93 m2) resulted in a predicted increase of 8.00% (95% CI: 
0.80 to 11.56%) in the number of recruits. In contrast, add-
ing one heterospecific average-sized tree crown (93 m2) 

Figure 3
Landscape-scale abundance of tree species recruits in 2018, Panama. Black lines represent landowner property boundaries, and 
histograms display seedling abundance by species on each of the properties. A single property lacked recruits in all transects and is 
colored gray without a histogram in the map. 
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in an average property resulted in a predicted increase of 
only 0.03%, with high uncertainty over whether the het-
erospecific tree crown area had a positive or negative im-
pact on the number of recruits (95% CI: -0. 60 to 0.68%). 
Conspecific tree crown area also had a stronger impact on 
recruitment probability. For an average tree species in an 
average landowner property, adding one conspecific tree 
crown was predicted to increase the probability of recruit-
ment by 0.05 (95% CI: -0.04 to 0.14), while adding one 
heterospecific tree crown had a near-zero impact on the 
probability of recruit abundance (95% CI: -2.26x10-3 to 
3.57x10-3).

We found evidence for conspecific negative density de-
pendence (CNDD) with a decrease in the predicted num-
ber of recruits in plots with high conspecific tree crown 
area (Figure 4). Our models produced a negative estimate 
for conspecific tree crown area’s quadratic effect on the 
count of tree recruits (-0.99; 95% CI: -1.63 to -0.37). For 
a low total area of conspecific tree crowns, the linear term 
dominated, resulting in an increased number of recruits. 
For a high total area of conspecific tree crowns, the qua-
dratic term dominated, resulting in fewer recruits. For ex-
ample, at a high density of 60 average-sized conspecific 

trees within 100 m, predicted abundance had a median 
value of  0.01 recruits (95% CI: 0.00 to 2.8), while at a 
low density of 23 conspecific trees, recruitment abundance 
had a median value of 0.38 recruits (95% CI: 0.01 to 1.93).

Models predicted a robust positive relationship be-
tween conspecific total tree crown area and the number 
of recruits for all individual species. Effects of increasing 
conspecific tree crowns from zero to one led to a range 
of increases in recruit abundance from 7.00% (95% CI: 
-2.00 % to 15.00 %) for Enterolobium cyclocarpum recruit 
abundance to 8.80% (95% CI: 1.40 % to 16.00 %) increase 
for Cedrela odorata. Across species, the effects of the het-
erospecific crown area on the number of recruits were 
generally smaller and more uncertain than the effects of 
conspecific total tree crown area and varied across species 
from positive to negative (Figure 5). The effects of hetero-
specific total tree crown area on recruitment also varied 
across species from positive to negative. The binomial dis-
tribution indicated a weakly  positive relationship between 
conspecific total tree crown area and the probability of re-
cruitment for all species ranging from increases in 0.19 
(95% CI: -0.06 to 0.31) to 5.04x10-4(95% CI: -0.01 to 
0.041) when conspecific tree crowns in the surrounding 

Figure 4
Conspecific tree crown area has a stronger positive effect on recruit abundance than the heterospecific tree crown area. These curves 
were created using the model structure of "Individual tree crowns, Species & Property" (Appendix S1: Table S4). Panel A shows the 
effect of increasing the number of conspecific and heterospecific tree crowns on the number of recruits of an average species in an 
average property, corresponding to the negative binomial model. Panel B shows the effect of increasing the number of conspecific and 
heterospecific tree crowns on the probability of recruiting an average species in an average property, corresponding to the binomial 
model. The shaded area in both panels represents 80% credible intervals.
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landscape increased from zero to one. Across species, the 
effects of heterospecific crown area on recruitment proba-
bility varied from positive to negative (Figure 5).

Individual property ownership and elevation 
influence tree recruit abundance

Property membership can alter relationships between total 
tree crown area and recruit abundance (Appendix S1: Fig-
ure S5). Depending on the property, adding one conspe-
cific tree crown of average size can lead anywhere from a 
decrease in recruit abundance of 1.75% (95% CI: -16.25% 
to 14.16%) to an increase of 13.43% (95% CI: 2.43% to 
25.75%). Dependence of relationships between total tree 
crown area and recruit abundance on property member-
ship was also evident in probability of recruitment, albeit 
with less variation than in the number of recruits. Relative 

to other covariates, elevation had a weak effect on recruit 
abundance (Appendix S1: Figure S6). 

Recruit abundance predictions have potential 
to provide decision support 

We applied our best-fitting model (Model “Individual tree 
crowns & Property” in Appendix S1: Table S4) to fore-
cast recruit abundance as a continuous surface across two 
properties in our study area. Considering a threshold for 
natural regeneration as >1 recruit per 25 m2, differences 
within and between properties are apparent (Figure 6). In 
property one, the presence of conspecific tree crowns of 
Byrsonima crassifolia results in predicted natural regener-
ation of this species in 10.05% of the property area (95% 
CI: 0.00 to 13.59%). On the other hand, Calycophyllum 
candidissimum is predicted to have low natural regenera-

Figure 5
Conspecific total tree crown area and heterospecific tree crown area have different effects on the number of recruits and the probabil-
ity of recruitment across all species. Panel A shows the posterior distribution for the model coefficients of conspecific and heterospe-
cific crown area on the number of recruits on the log-linear scale, corresponding to the negative binomial model. Panel B shows the 
posterior distribution for the model coefficients of conspecific and heterospecific trees on the probability of recruitment on the logit 
scale, corresponding to the binomial model. The effects shown represent the total effects of total tree crown area on recruit abundance 
with 95% CI, including the community-level (fixed) effects and the species-level (random) effects. 
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tion in this property (3.51% of the property area; 95% 
CI: 0.00 to 6.38%), primarily due to negative density 
dependence and adverse effects of individual prop-
erty ownership on the baseline recruit abundance for 
this species. In property four, these species-specific 
predictions show high natural regeneration for both 
species, where 21.83% (95% CI: 0.00 to 36.44%) of 
property area meets our threshold for natural regener-
ation of Byrsonima crassifolia, and 20.70% (95% CI: 
0.00 to 28.50%) of the area of this property meets our 
threshold for natural regeneration for Calycophyllum 
candidissimum. 

  

DiscussionDiscussion

Large-scale restoration projects could benefit from eco-
system services provided by low-cost natural regeneration 
if we can predict where native species will recruit (Holl et 
al. 2000). We applied a species-specific map of tree crown 
area, to predict tree recruit abundance in an agricultural 
landscape. Accounting for the species identity of neigh-
boring tree crowns improved predictions of tree recruit 
abundance. However, the effect of the conspecific and het-
erospecific tree crown area was conditional on individual 
property ownership. Predicting tree recruit abundance in 
tropical landscapes will require accounting for the identity 
of trees by separating conspecific trees from heterospecif-

Figure 6
Potential application of models for reforestation decision support. We applied the best-fitting model (Model "Individual tree crowns 
& Property" in Appendix S1: Table S4) to predict tree recruit abundance in property one and property four. Parcel identity in 
Appendix S1: Figure S1. The dark green color in the recruit abundance projections represents at least one recruit in a 25m2 area, 
not colored areas represent less than one recruits in 25 m2 area. The pink and orange points in the RGB images are the locations of 
Calycophyllum candidissimum and Byrsonima crassifolia trees respectively. 
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ic trees. Altogether, our results enable predictions of tree 
species recruit abundance at the resolution of individual 
trees and the extent of land management units. High spa-
tial resolution predictions of tree recruitment potential will 
enable species and property-specific decision-making and 
facilitate the integration of natural regeneration into forest 
landscape restoration plans. 

Predicting tree recruitment from species-spe-
cific tree crown maps

We have demonstrated the potential of species-specific tree 
crown maps from hyperspectral and lidar data to improve 
our ability to predict the abundance of tree species recruits. 
Our best model for all species included species variability 
by differentiating conspecific from heterospecific neigh-
boring tree crowns. This approach also allowed including 
conspecific negative density dependence (CNDD), which 
provides another example of a species-specific process key 
to predictive capacity in our models. An additional benefit 
of high spatial resolution data on tree crown abundance in 
heterogeneous landscapes is the ability to account for trees 
outside forests, including dispersed pasture trees and live 
fence trees, that may not be included in coarse forest cov-
er metrics (Caughlin et al. 2016, Tarbox et al. 2018). Our 
models reveal a correlation between tree crown area and 
recruit abundance but do not shed light on the numerous 
processes that underlie tree recruitment, from seed pro-
duction to seedling survival. Disentangling these process-
es will be key for effective restoration practice (Holl et al. 
2000).

While airborne imagery was crucial to our capacity 
to predict tree recruit abundance, high-resolution remote 
sensing products are still limited in availability, particular-
ly for the tropics (Tay et al. 2018). Unmanned Aerial Ve-
hicles (UAVs) could provide a relatively low-cost solution 
with customizable spatial and temporal extents (Zhang et 
al. 2016, Dalponte et al. 2019). Hyperspectral sensors with 
hundreds of spectral bands can now be mounted on UAVs, 
potentially enabling similar species classification ability 
as the imagery used in our study (Liu et al. 2020). Eco-
logical observatory network such as National Ecological 
Observatory Network (NEON) and Forest Global Earth 
Observatory (ForestGEO) will also increase the availabil-
ity of tree crown maps that could be applied to answer 
landscape-scale questions on tree species distributions and 
demography (Marconi et al. 2019).

Improving species classification algorithms’ accuracy 
will aid our capacity to predict ecological processes, in-
cluding tree species recruitment. As more accurate meth-
ods for tree crown segmentation and species classifica-

tion are developed (e.g., Dalponte et al. 2019, Sothe et al. 
2019), we anticipate that the predictive capacity of ecolog-
ical patterns from tree crown maps will improve. A current 
limitation is the trade-off between the training sample size 
and the number of species that can be accurately classified 
(Baldeck and Asner 2014), which leads studies classify-
ing between 4 to 6 species to reach accuracies over 90% 
(Zhang et al. 2020). In contrast, studies classifying high-
er number of species, including rare species, reach lower 
classification accuracies due to lower available samples of 
rare species (Graves et al. 2016). Nevertheless, work is 
ongoing to improve classification accuracy, including the 
development of workflows that can pool data from multi-
ple sites to increase training data size (Marrs and Ni-Meis-
ter 2019). Future efforts to include functional traits as the 
basis for tree species classification from remotely sensed 
data may further improve accuracy (Shi et al. 2018). Sta-
tistical models that account for misclassification in spe-
cies identity present an alternate approach with potential 
to improve ecological models that rely on remote sensing 
classification (Conn et al. 2013). A related challenge will 
be propagating uncertainty from tree crown segmentation 
and species classification based on remotely sensed data 
through to ecological predictions (Maddox et al. 2019, 
Wen et al. 2019). A benefit of propagating uncertainty from 
tree species classification to recruit abundance models will 
be to identify the relative importance of species misclas-
sification and biological variability for model uncertainty.

The relevance of species identity for recruit-
ment

We found that the effect of conspecific tree crowns on 
recruit abundance is stronger than that of heterospecific 
trees. This is consistent with patterns observed in oth-
er tropical landscapes (Comita et al. 2010) and indicates 
that differentiating conspecific from heterospecific trees 
is essential to understand patterns in natural regeneration 
(Zahawi et al. 2021). Previous tree recruitment studies in 
tropical landscapes have aggregated conspecific and het-
erospecific tree crown area into non species specific forest 
cover (Zahawi et al. 2013, Holl et al. 2017, Duncan and 
Duncan 2000, Lopes et al. 2012). Our results suggest that 
the varying impacts (from weak to strong effects) of forest 
cover on seedling recruitment from previous studies may 
have partially resulted from the lack of species identity 
data on reproductive trees in existing forests. 

Landscape-scale CNDD provides an example of an 
ecological process where differentiating between same 
and different species is essential for accurate prediction. 
We also found evidence for CNDD in our study, with 
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decreased recruit abundance when conspecific total tree 
crown area was high (Figure 4). In natural landscapes, 
CNDD is prevalent across many tropical tree species and 
is likely driven by host-specific natural enemies (Comita 
and Stump 2020). We suggest that CNDD may also play 
a role in agricultural landscapes, including our study area, 
an agropastoral region subject to hundreds of years of cat-
tle ranching and continued management. Multiple ecolog-
ical processes, from seed arrival to growth and survival 
of established plants, could drive the hump-shaped rela-
tionship between conspecific tree crown area and recruit 
abundance observed in our study. Seed dispersal kernels 
can have a non-monotonic shape, due to wind dynam-
ics(Maurer et al. 2013) or animal movement (Rehm et al. 
2019), resulting in highest seed arrival at some distance 
from the parent plant. Mature trees can also limit seedling 
establishment in a variety of ways, from increasing densi-
ty of competing seedlings (Schwinning and Kelly 2013), 
to hosting species-specific pests and pathogens (Liu and 
He 2019),to limiting water and light availability (Derroire 
et al. 2016). In working landscapes, where farmers man-
age tree species abundance, human decision-making could 
also influence CNDD if rare species are preferentially al-
lowed to recruit (Lengkeek 2003). Understanding the pro-
cesses that generate spatial patterns of tree recruit abun-
dance during secondary succession will require additional 
research that goes beyond counting recruit abundance at 
a single time period. Seed traps provide a way to direct-
ly quantify seed dispersal kernels (Reid et al. 2015), and 
seed addition experiments can quantify establishment lim-
itation across environmental gradients (Clark et al. 2007). 
However, deploying seed traps or experimental plots at 
spatial extents that match heterogeneity in natural regen-
eration across agropastoral landscapes presents logistical 
challenges. Remotely sensed data, including tree crown 
maps, could help by generating hypotheses and informing 
stratified sampling schemes.

In contrast to the effects of conspecific total tree crown 
area, which were fairly consistent across all species, ef-
fects of heterospecific total tree crown area varied widely 
between species. Differences in heterospecific tree crown 
area effects between species are suggestive of intraspecif-
ic differences in life history. For example, Calycophyllum 
canddissimum had a strong positive relationship with het-
erospecific total tree crown area, potentially resulting from 
this species’ relatively high abundance during mid-late 
succession. Alternately, recruit abundance of Guazuma 
ulmifolia, a light-demanding early successional species 
(Kalacska et al. 2004, Hall and Ashton 2016), exhibited 
a more negative relationship with heterospecific total tree 

crown area. While a higher sample size of tree species with 
variable functional traits will be necessary to test these re-
lationships rigorously, landscape-level, species-specific 
tree crown maps provide a rich dataset to improve our un-
derstanding of how species functional traits and dispersal 
syndromes impact forest succession (Asner and Martin 
2016, Durán et al. 2019).

Individual property ownership influence on 
tree recruitment 

Cadastral data on individual property ownership was an 
important data source for models’ predictive capacity. 
In our study area, where the vast majority of the land is 
privately owned, cadastral data represents differences in 
land management history with far-reaching consequences 
for ecological processes (Caughlin et al. 2016, Valencia 
Mestre 2017). This spatial variability could result from 
differences in landowners’ decision-making (Metzel and 
Montagnini 2014) or underlying biophysical differences 
between properties (e.g. soil fertility; Hall et al. 2011). 
Property boundaries alone do not provide insight into 
the socioeconomic drivers of spatial heterogeneity. In the 
Azuero Peninsula, we expect that factors including depen-
dence on wage labor (Valencia Mestre et al. 2018), income 
from off-farm employment (Sloan 2015), and tree planting 
and protecting practices (Garen et al. 2011) could underlie 
variable tree recruit abundance between properties. Un-
derstanding how these and other socioeconomic process-
es will require data that go beyond property boundaries, 
such as interviews with cattle ranchers (Lerner et al. 2015, 
Valencia Mestre 2017). High-resolution remotely sensed 
data, including tree crown maps, could assist participatory 
research to collect these data in collaboration with local 
stakeholders (Caughlin et al. 2019a). A limitation in this 
study is that we cannot extrapolate recruitment predictions 
beyond the sampled properties. Identifying drivers of tree 
recruitment variability that can be measured using remote 
sensing could enable predictions across larger areas. For 
example, hyperspectral imagery can detect invasive grass 
species (Schmidt and Skidmoore 2001) that inhibit forest 
succession in cattle pastures (Griscom et al. 2009). In the 
context of an ongoing forest transition in the Azuero Pen-
insula driven by regional socioeconomic changes (Sloan 
2015), understanding the human drivers of spatial hetero-
geneity at farm scales remains a critical research need. 

We modeled property identity as a random effect, in-
cluding separate estimates for each property in our data. 
This approach has advantages and disadvantages for fore-
casting tree recruitment across large areas. An increasing 
number of national governments mandate public access to 
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cadastral data (Femenia-Ribera and Mora-Navarro 2018, 
Chekole et al. 2021). Following the public release of ca-
dastral data, policy interventions to promote reforestation 
and reduce deforestation are being applied at the level of 
properties, including payments for ecosystem services 
(Oliveira Fiorini et al. 2020). The wide availability and 
policy relevance of cadastral data means that frameworks 
to include cadastral data in ecological models have broad 
applicability (Requena-Mullor et al. 2019). A disadvan-
tage of modeling property identity as a categorical vari-
able is that estimating effects for properties not included in 
the data used to fit the model is not possible. Nevertheless, 
we expect that incorporating property identity as a random 
effect in ecological models will generally improve model 
predictions, as accounting for spatial variation improves 
estimation of other effects in the model (McElreath 2020). 
For example, we expect that our estimated effects of tree 
crown area are more reliable after accounting for property 
identity in our models.

Recruitment abundance predictions potential 
to provide decision support

Overall, predicting tree species recruitment at the scale 
of individual trees and properties will improve decision 
support for reforestation projects (Brancalion et al. 2019, 
Crouzeilles et al. 2020). Using models similar to the one 
we have developed here, restoration managers could iden-
tify target areas with high natural regeneration as low cost 
opportunities for forest recovery (Chazdon and Guarig-
uata 2018), at the scale of landowner properties where 
restoration interventions take place (Oliveira Fiorini et al. 
2020).Given that different tree species provide different 
ecosystem services, and farmer preference for particular 
species can vary (Garen et al. 2009), forecasts of individ-
ual species recruitment will boost the value of natural re-
generation maps. Altogether, these examples demonstrate 
how our models enable species-and property-specific 
predictions of tree species recruit abundance in a hetero-
geneous landscape. Our work is the first step towards a 
decision support tool that could improve species and site 
selection by providing information on which tree species 
are likely to recruit naturally in a given farm (Chazdon and 
Guariguata 2018). 
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